Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The existence of highly productive coral reefs within oligotrophic gyres is in part due to intensive recycling of macronutrients and organic matter by microbes. Therefore, characterizing reef bacterioplankton communities is key for understanding reef metabolism and biogeochemical transformations. We performed a high‐resolution survey of waters surrounding Mo'orea (French Polynesia), coupling 16S metabarcoding with biogeochemical and physical measurements. Bacterioplankton communities differed markedly among reef ecosystems on three sides of the island, and within each system distinct communities emerged in forereef, backreef and reef pass habitats. The degree of habitat differentiation varied among the island sides according to current speeds inferred from wave power. Oceanic‐associated taxa were enriched in forereefs and throughout western reefs with highest wave power and lowest productivity. Reef‐associated taxa were enriched in backreef and pass habitats most strongly on northern reefs with lowest wave power and highest productivity. Our results offer insight into dynamics regulating reef microbial communities.more » « lessFree, publicly-accessible full text available December 11, 2026
-
Abstract Work on marine biofilms has primarily focused on host-associated habitats for their roles in larval recruitment and disease dynamics; little is known about the factors regulating the composition of reef environmental biofilms. To contrast the roles of succession, benthic communities and nutrients in structuring marine biofilms, we surveyed bacteria communities in biofilms through a six-week succession in aquaria containing macroalgae, coral, or reef sand factorially crossed with three levels of continuous nutrient enrichment. Our findings demonstrate how biofilm successional trajectories diverge from temporal dynamics of the bacterioplankton and how biofilms are structured by the surrounding benthic organisms and nutrient enrichment. We identify a suite of biofilm-associated bacteria linked with the orthogonal influences of corals, algae and nutrients and distinct from the overlying water. Our results provide a comprehensive characterization of marine biofilm successional dynamics and contextualize the impact of widespread changes in reef community composition and nutrient pollution on biofilm community structure.more » « less
-
Summary Coral reefs are highly productive ecosystems with distinct biogeochemistry and biology nestled within unproductive oligotrophic gyres. Coral reef islands have often been associated with a nearshore enhancement in phytoplankton, a phenomenon known as the Island Mass Effect (IME). Despite being documented more than 60 years ago, much remains unknown about the extent and drivers of IMEs. Here we utilized 16S rRNA gene metabarcoding as a biological tracer to elucidate horizontal and vertical influence of an IME around the islands of Mo′orea and Tahiti, French Polynesia. We show that those nearshore oceanic stations with elevated chlorophyllaincluded bacterioplankton found in high abundance in the reef environment, suggesting advection of reef water is the source of altered nearshore biogeochemistry. We also observed communities in the nearshore deep chlorophyll maximum (DCM) with enhanced abundances of upper euphotic bacterioplankton that correlated with intrusions of low‐density, O2rich water, suggesting island influence extends into the DCM.more » « less
An official website of the United States government
